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SUMMARY

A method for the direct computation of the instantaneous sensitivities of unsteady compressible flows is
proposed. It is based on the complex differentiation of the full compressible Navier–Stokes equations and
does not require the storage of the unsteady flow solution to be differentiated. The method does not rely on
any assumption on the basic Navier–Stokes solver, and can therefore be implemented in a straightforward
way. The method is assessed on several cases, including a two-dimensional subsonic mixing layer. It
is observed that the sensitivity patterns can be interpreted thanks to Kovasznay’s decomposition for
perturbations in a compressible flow. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The sensitivity of a compressible flow with respect to disturbances is a topic of major interest
in fluid dynamics. It can be interpreted as a measure of its receptivity to perturbations, and its
knowledge is of central interest for many purposes like stability analysis and flow control. Highly
sensitive flows can be deeply modified by small disturbances, and can therefore be controlled with
low-energy devices and/or small changes in the geometry of solid bodies, while unsensitive flows
are very difficult to control, since they are robust with respect to external perturbations.

Sensitivity analysis [1] is commonly carried out using the linear stability theory [2, 3], and is
therefore usually restricted to simplified cases which can be handled using the classical theoretical
tools, such as normal mode decomposition. Another way to gain information dealing with the
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sensitivity of a flow is to carry out a ‘brut force’ analysis, i.e. to generate abacuses performing a
large number of experiments with different operational conditions and comparing flow solutions.
This method has no restriction with respect to the flow complexity, but is very expensive.

It is also possible to address the sensitivity issue using the approaches belonging to the differ-
entiation method family. Here, the purpose is to compute the gradient of the solution with respect
to a given flow parameter. A large number of mathematical tools related to this approach exist,
which have been applied within the shape optimization framework, a few of them having been
recently employed for active flow control purpose. The sensitivity of the flow is interpreted as the
derivatives of the solution. The key element in these approaches is the computation of the solution
derivatives. The most general approaches are based on the dual approach and require to solve the
adjoint problem with ad hoc boundary conditions. Despite this method is very powerful, its use
is still usually restricted to steady flows, because it requires the storage of the unsteady solution.
This problem can be (at least partially) alleviated using surrogates for the direct unsteady solution
or incomplete gradient approaches.

The present paper deals with an approach that makes it possible to compute at the same time in a
single run the usual flow solution and its instantaneous sensitivity for unsteady solution, without the
need for storing the solution. It is based on the complex differentiation approach, and necessitates
a trivial modification of common Navier–Stokes solvers. It can therefore be implemented in a
straightforward manner. The complex differentiation has been demonstrated to be much more
accurate that the usual finite-difference approach. Another advantage is that the direct computation
of instantaneous sensitivities of instantaneous flow events (e.g. vortices, acoustic waves) provides
the user with a deep insight into the flow physics and may be of major interest to design flow
control strategies/devices.

To the knowledge of the authors, it is the first time that the full sensitivity of the compressible
unsteady flows is computed using the complex variable approach.

The paper is organized as follows. Section 2 presents the governing equations and introduces
the sensitivity variables for the compressible Navier–Stokes equations. Full exact governing equa-
tions for these variables are also given. The complex differentiation approach is presented in
Section 3 along with the related direct computation of the unsteady sensitivity field. The main
elements of the numerical method used to solve the Navier–Stokes equations are given in
Section 5. The proposed method is illustrated using simple but meaningful examples in Section 6.

2. GOVERNING EQUATIONS AND SENSITIVITY VARIABLES

2.1. Governing equations

The three-dimensional Navier–Stokes equations in terms of the pression p, the velocity
u = (u1, u2, u3) and the entropy s are as follows, using the notation of repeated indices:
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where the viscous tensor is defined as

�i j = 2�si j + �
�uk
�xk

�i j (2)

and the tensor

si j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(3)

with 3� + 2�= 0. We will refer to the thermally ideal gas throughout this paper:

p= �RT (4)

The propagation of heat is given by Fourier’s law

q j = −�
�T
�x j

(5)

where T is the temperature (in kelvins K) and � the thermal conductivity. The constant � can be
expressed in terms of the dynamic viscosity � by

� = �Cp

Pr
(6)

where Pr is the Prandtl number, and Cp the specific heat at constant pressure, Cv the specific heat
at constant volume, and the ratio of the specific heats is denoted by �:

� = Cp

Cv

(7)

The speed of sound, c, is given by

c=√�RT (8)

Finally, viscous dissipation is denoted by

� = �i j si j (9)

These equations, once discretized on a suitable grid, allows the direct numerical simulation of
a compressible flow and thus describe all non-stationary dynamics that results. They also allow
us to describe the propagation of acoustic waves given that the grid resolution is adapted to the
problem.

2.2. Sensitivity variables

Let us consider the case if we are interested in analysing the sensitivity of the computed solution
with respect to a scalar real parameter �. The parameter � can be related to any variables involved
in the numerical model: boundary conditions, initial condition, numerical scheme coefficient or
physical parameters such as the Reynolds number and the Mach number. All flow variables can
be formally rewritten as function of space, time and �:

	= 	(x, t; �), 	= u, s, p, �, T (10)
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The sensitivity variables u�
i , s

�, p�, �� and T � about the state � = �0 are defined as

	�(x, t; �0) ≡ �	

��
(x, t; � = �0), 	= u, s, p, �, T (11)

The variable 	� is related to the sensitivity of 	 with respect to �: it is an explicit measure of
its dependency upon �. It is worth noting that 	� exhibits the same space and time dependencies
as 	. Definition (11) holds only for smooth flows, i.e. for flows whose solutions are differentiable
with respect to � about � = �0.

For a given control parameter �, the sensitivity equations are obtained differentiating the original
Navier–Stokes system (1) with respect to �, yielding (the dependency upon x, t and � is omitted
for sake of clarity)
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with

��
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i j ) + (��skk + �s�
kk)�i j , s
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and

�� = ��
i j si j + �i j s

�
i j (16)

The set of equations (12) is linear with respect to the sensitivity variables. It is the most
general linear perturbative model derived from the Navier–Stokes equations, and can therefore be
considered as an extension of the usual linearized models for acoustics and linear stability analysis.
The sensitivity variables are very powerful tools providing a deep insight into the flow dynamics
and the receptivity of the flow with respect to a change in the control parameter �. An interesting
point is that � can be either a physical parameter or a numerical one.

Solving the linearized equations (12) is usually carried out writing a dedicated code (e.g. [4, 5]).
Such a strategy is efficient when dealing with the dynamics of perturbation around a steady mean

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1863–1886
DOI: 10.1002/fld



DIRECT SENSITIVITY ANALYSIS FOR SMOOTH COMPRESSIBLE FLOWS 1867

flow, but it suffers severe storage drawbacks when the mean flow is unsteady. Another way to
solve the sensitivity equations is to use automatic differentiation of the basic flow solver (e.g. [6]).

It is worth noting that, up to now, the sensitivity variable approach has mainly been used to
analyse steady flows for aerodynamic shape optimization problem (e.g. [4, 6]). It has been applied
to unsteady laminar incompressible flows only very recently [5].

3. DIRECT SENSITIVITY VARIABLES COMPUTATION VIA
COMPLEX DIFFERENTIATION

3.1. General

Here we recall the concept of complex differentiation, which was first introduced by Lyness and
Moler [7]. The main advantage of complex differentiation is that in evaluating first-order derivatives,
roundoff errors can be eliminated. Recall that for evaluating first derivatives of a function f (x) at
the point x0, formulas like

f ′(x0) ≈ f (x0 + 
) − f (x0 − 
)

2

(17)

are used. We are faced usually with the dilemma of using a small 
 to minimize the truncation error
versus avoiding a small 
 because of computer roundoff errors, which occur when we evaluate the
difference at the numerator.

In Equation (17), we replace 
 with i
, where i2 =−1. To understand the approximation that
we are going to make, let f be an analytic function of the complex variable z, and we assume in
addition that f is real on the real axis. f may be expanded in a Taylor series about the real point
x0 as follows:

f (x0 + i
) = f (x0) + i
 f ′(x0) − 
2

2! f
′′(x0) − i


3

3! f
′′′(x0) + O(
4) (18)

Taking the imaginary parts of both sides of the equation and dividing both sides by 
 yields

Im[ f (x0 + i
)]



= f ′(x0) − 
2

3! f
′′′(x0) + O(
4) = f ′(x0) + O(
2) (19)

Hence we obtain an approximation to f ′(x0) with a truncation error of O(
2). However, Im[ f (x0+
i
)]/
 is real and importantly, is not subject to subtractive cancellation, and thus we have eliminated
the problem of roundoff errors. Comparisons presented in [8, 9] show that it is more accurate than
the usual finite-difference approach and as accurate as the adjoint-based approach.

3.2. Complex differentiation of the unsteady compressible Navier–Stokes equations

Despite the complex differentiation technique is not recent, it has not been widely exploited up
to now. It has been applied to differentiate complicated functions of a single variable in [7, 10].
It was extended to the case of the computation of the sensitivity of the drag of an airfoil with
respect to wing geometrical parameters in [8, 9]. In [8], the steady Navier–Stokes equations were
considered, while in [9] only the drag computation routine was differentiated. To the knowledge of
the authors, the computation of the sensitivities of the full unsteady compressible Navier–Stokes
equations via complex differentiation has not yet been addressed.
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Now let us carry out some analysis when we render all the variables in Equation (1) complex.
This is straightforwardly implemented changing all real variables into complex ones in the Navier–
Stokes solver. This step can be written as (for a dummy variable 	)

	(x, t; �) −→ 	(x, t; �) + i	̂(x, t; �) = 	(x, t; �) + i
	̃(x, t; �) (20)

where 	̂, 	̃ and 
 are the imaginary part, the rescaled imaginary part and a scaling parameter,
respectively. We note by p̃, ũi , s̃, �̃, �̃i j , q̃ j , �̃ the corresponding rescaled imaginary parts of the
variables p, ui , s, �, �i j , q j ,�. If no imaginary perturbation is imposed, the solution will remain
strictly real and identical to the solution of the usual Navier–Stokes equations.

If we introduce a perturbation to the imaginary part of the control parameter � of the order of

�1, then if we equate the real and imaginary parts of the system of equations, we obtain for the
real part (the dependency upon x, t and � is omitted for sake of clarity):
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If we equate the imaginary parts we obtain likewise:
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(22)

Comparing Equations (1), (12), (21) and (22), one can see that the real and imaginary parts
of the complex Navier–Stokes equations are O(
2) approximations of the original solution and
its sensitivities, respectively. As a consequence, the straightforward modification of the original
Navier–Stokes solver consisting as defining all arrays as complex in place of real ones makes
possible to compute both the solution and its sensitivities in a single run.

Therefore, a simple way to compute the sensitivity of the Navier–Stokes solution with respect
to a real computational parameter �0 is to change it into �0 + i
�̃. The instantaneous sensitivity
variables are directly recovered from the computed imaginary part of the solution of the complex
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Navier–Stokes equations:

	�(x, t; �0) = 	̂(x, t; �0)



+ O(
2), 	= ui (i = 1, 2, 3), s, p, �, T (23)

Several practical examples are given in the following.

4. BOUNDARY CONDITIONS

A very interesting feature of the pseudo-characteristic formulation is that it enables a very accurate
and simple implementation of the boundary conditions. The very reason why is that using this
formulation the full Navier–Stokes equations are solved at boundary nodes, fluxes associated with
incoming waves being prescribed in an adequate way to enforce the targeted physical effects. Since
the full equations are solved at the boundary, and not replaced by simplified surrogate models, the
pseudo-characteristic formulation is expected to have a greater potential than other formulations
which rely on the implementation of approximate boundary conditions.

We will explicit the real and imaginary parts of the boundary conditions in this section. The
real parts of the boundary conditions are those found in Lu and Sagaut [11], with the exception
that there is an extra term of the order of 
2 in this work.

4.1. Subsonic/supersonic outflow boundary conditions

The supersonic outflow boundary condition requires no special treatment.
The definition of subsonic non-reflecting boundary conditions is straightforward. Assuming that

the outflow boundary is located at the node i = Nx , a non-reflecting boundary condition is obtained
solving the Navier–Stokes equations while setting the incoming acoustic disturbance to zero (i.e.
taking X− = 0).

This is equivalent to for the real part

(u − c)

(
1

�c

�p
�x

− �u
�x

)
+ O(
2) = 0 (24)

and the imaginary part

(ũ − c̃)
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(�c)2
�p
�x

+ 1

�c

� p̃
�x

− �ũ
�x

)
+ O(
2) = 0 (25)

4.2. Subsonic/supersonic inflow boundary conditions

The supersonic inflow condition is also immediately implemented, since it consists in prescribing
the variation of all unknowns at the boundary nodes. This is equivalent to imposing �p/�t, �u/�t,
�v/�t, �w/�t and �s/�t at each time step or to solve the Navier–Stokes equations. For a supersonic
inlet, since the acoustic waves are not able to go back up the flow, we can prescribe the quantities
�p/�t, �u/�t, �v/�t, and �s/�t on the boundary for a two-dimensional case.

These four quantities allows to solve the equations on the domain boundaries by prescribing
the fluxes associated with incoming characteristics. For an inlet on the left of the computational
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domain, we have for the real part
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where the following notations are used:
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For the imaginary part, we have

X̃ s = −Ỹ s − R p̃

p2

(
−�qi

�xi
+ �

)
+ R

p

(
−�q̃i

�xi
+ �̃

)
− �s̃

�t
+ O(
2) (33)

X̃v = −1

2
( ˜Y+ − ˜Y−) − �̃

�2
��2 j
�x j

+ 1

�

� ˜�2 j
�x j

− �ṽ
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2

)
− (� − 1)(�c̃ + �̃c)

(�c)2

(
−�qi

�xi
+ �

)
+ � − 1

�c

(
−�q̃i

�xi
+ �̃

)

− �̃

�2
��1 j
�x j

+ 1

�

� ˜�1 j
�x j

+ �̃c + �c̃

(�c)2
�p
�t

− 1

�c

� p̃
�t

− �ũ
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The pseudo-characteristic formulation also enables the definition of fully consistent exact inflow
conditions in the subsonic case. Considering the case of a subsonic inflow condition at the boundary
i = 1, one can see that the definition of such a condition is equivalent to prescribing X+, Xs, Xv

and Xw at this location at each time step. Since there are four unknown fluxes and five unknown
physical variables, one recovers the well-known results that the time variation of all physical
unknowns cannot be prescribed at the same time.

A careful examination of the system of governing equations shows that prescribing �v/�t and
�w/�t is equivalent to prescribing values for Xv and Xw. To obtain a well-posed problem, one
condition must be prescribed for each of these two velocity components. The three remaining
physical variables (namely p, u and s) being coupled at the interface, they cannot be treated
separately. A consistent inflow condition will therefore consist in finding values of �p/�t , �s/�t and
�u/�t (or in an equivalent manner X+ and Xs) at the inlet plane. A large number of combinations
can be defined, depending on the prescribed quantities.

If �u/�t and �s/�t are prescribed, then we obtain for the real part
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For the imaginary part, we have
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It is important to note that these boundary conditions are exact, since they are directly derived
from the Navier–Stokes equations without any assumptions. Therefore, they are consistent from a
thermodynamic viewpoint.
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4.3. Rigid/compliant isothermal wall

Let us address now the modelling of an infinitely rigid or moving isothermal wall. In the two-
dimensional case, the boundary conditions are of the following form:
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The imaginary part is the following:
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�2
��1 j
�x j

+ 1

�

� ˜�1 j
�x j

+ O(
2) (42)

˜Y+ = 2

(
−�ṽ

�t
− X̃v + 1

2
˜Y− − �̃

�2
��2 j
�x j

+ 1

�

� ˜�2 j
�x j

)
+ O(
2) (43)

Ỹ s = −Xs − R p̃

p2

(
−�c

2
(X+ + X− + Y+ + Y−) + �

(
−�qi

�xi
+ �

))
+ �R

p

(
−�q̃i

�xi
+ �̃

)

+ R

p

(
− (�̃c − �c̃)

2
(X+ + X− + Y+ + Y−) − −�c

2
(X̃+ + X̃− + ˜Y+ + ˜Y−)

)
(44)

The rigid wall boundary condition is recovered taking �u/�t = �v/�t = 0. The same system of
equation can be used to model a porous boundary with a prescribed transpiration velocity. An
important point is that, once again, the boundary condition is exact and fully consistent from a
thermodynamic viewpoint.

5. BRIEF PRESENTATION OF THE NUMERICAL METHOD

The numerical method utilized in the present study is the same as the one described in [11]. Since
the complex differentiation strategy does not rely on any assumption on the flow solver, it will not
be detailed here. Only its main elements will be recalled below. The interested reader can refer
to the original publication for an exhaustive description of the numerical method. It is based on
the pseudo-characteristic formulation of the convection terms introduced by Sesterhenn [12] and
further developed by Lu and Sagaut [11].

This new decomposition of the pressure, velocity and entropy fluxes enables a very simple and
natural use of upwind schemes to enforce numerical stability while minimizing the numerical
dissipation.

In the present work, all inviscid fluxes are written in a quasi-linear form and appear under
the generic form (u(�	/�x)), where u is the advecting velocity and 	 the advected quantity. To
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enforce both numerical stability and accuracy for wave propagation problems, it is chosen here to
use high-order upwind Dispersion Relation Preserving schemes for all fluxes.

At interior nodes (i.e. for grid point with index 5� i � Nx − 2, where Nx is the index of the
last grid point) the following fourth-order accurate upwind biased Dispersion Relation Preserving
scheme is used: (

u
�	

�x

)
i

= ui
1

�x

∑
k=−4,2

ak	i+k (45)

with

a−4 = 0.0161404967151, a−3 =−0.122821279020, a−2 = 0.455332277706

a−1 =−1.2492595882615, a0 = 0.5018904380193, a1 = 0.4399321927296

a2 = −0.04121453788895

where it was assumed that the convection speed u is positive. The above DRP scheme is modified
as follows near the computational domain boundaries:

• at i = Nx , a sixth-order one-sided upwind scheme is utilized:

(
u

�	

�x

)
i

= ui
1

�x

∑
k=−6,0

ak	i+k

a−6 = 1/60, a−5 =−6/5, a−4 = 15/4, a−3 = 20/3

a−2 = 15/2, a−1 =−6, a0 = 49/20

(46)

• at i = Nx − 1, the following upwind-biased DRP scheme proposed in [13] is implemented

(
u

�	

�x

)
i

= ui
1

�x

∑
k=−5,1

ak	i+k

a−5 =−0.0306489732244242, a−4 = 0.202225858313369

a−3 =−0.634728026533812, a−2 = 1.29629965415671

a−1 = −2.14305478803459, a0 = 1.10888726751399

a1 = 0.201019007808754

(47)

• at i = 4, a fifth-order upwind-biased scheme is used:

(
u

�	

�x

)
i

= ui
1

�x

∑
k=−3,2

ak	i+k

a−3 =−1/30, a−2 = 1/4, a−1 = −1, a0 = 1/3, a1 = 1/2, a2 =−1/20

(48)
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• at i = 3, it is replaced by the following third-order upwind scheme(
u

�	

�x

)
i

= ui
1

�x

∑
k=−2,1

ak	i+k

a−2 = 1/6, a−1 =−1, a0 = 1/2, a1 = 1/3

(49)

• at i = 2, the first-order upwind scheme is used(
u

�	

�x

)
i

= ui
1

�x

∑
k=−1,0

ak	i+k

a−1 =−1, a0 = 1

(50)

• at i = 1, the following downwind scheme is used:(
u

�	

�x

)
i

= ui
1

�x

∑
k=0,2

ak	i+k

a0 =−3/5, a1 = 4/5, a2 = −1/5

(51)

The time integration is performed using the third-order TVD Runge–Kutta scheme proposed by
Shu and Osher [14]:

un,1 = un + �t

(
�un

�t

)

un,2 = 1

4

(
3un + un,1 + �t

(
�un,1

�t

))

un+1 = 1

3

(
un + 2un,2 + 2�t

(
�un,2

�t

))
(52)

6. NUMERICAL SIMULATIONS

We now illustrate the potential of the proposed method considering simple but meaningful test
cases. The issue of sensitivity of a smooth compressible flow is formally close to the problem of its
linear instability properties: a linearly stable flow is expected to weakly respond to a perturbation,
i.e. to have weak sensitivity variables, while an instable flow will exhibit large sensitivities. The
sensitivity variables can also be used to gain an insight into possible couplings between the physical
modes defined by Kovasznay (namely: vorticity mode, entropy mode and acoustic mode) [15].

6.1. Sensitivity of a two-dimensional inviscid acoustic wave

We consider the evolution of an initial two-dimensional acoustic pulse in a fluid at rest. The
computational domain is [0, 40]2 and outflow conditions are applied on all boundaries of the
computational domain. The mesh is uniform with �x = �y = 0.2.
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The initial disturbance is defined as

�(x, y, t = 0) = �e−�(x2+y2)(1 + i
) (53)

p(x, y, t = 0) = c20� (x, y, t = 0) (54)

u(x, y, t = 0) = v(x, y, t = 0) = 0 (55)

with �= 0.01, b= 3, and 
= 10−6. Here, c0 denotes the speed of sound in the unperturbed fluid.
The complex perturbation added to the initial density disturbance will lead to the computation of
the sensitivity of the solution with respect to the amplitude of the initial density fluctuation. The
time-step �t is chosen such that CFL≡ c�t/�x = 0.5.

The instantaneous sensitivity of the pressure field at 250�t is displayed in Figure 1 for different
values of the control parameter 
. First, one can see that the sensitivity fields obtained for the
different values of 
 are identical, showing that the solution is converged with respect to this
parameter. This robustness with respect to the parameter 
 was observed in previous studies
dealing with the differentiation of scalar function or the incomplete gradient computation [9].
It is shown here that it is also true when computing the instantaneous sensitivities of the full
compressible Navier–Stokes equations.

It is observed that the sensitivity of the pressure is associated with the isotropic acoustic wave
which is emitted at the initial time due to the relaxation of the initial perturbation, leading to the
occurence of an acoustic sensitivity wave, whose wavelength is identical to the one of the physical
wave. Therefore, one can deduce that the amplitude of radiated acoustic field acoustic field can be
modified changing the amplitude of the initial density disturbance. This conclusion is in perfect
agreement with the linear acoustic theory.

We now investigate the sensitivity of the inviscid acoustic wave with respect to an entropy
disturbance. To this end, instead of perturbing �, we perturb the entropy of the system by 
= 10−6.
The instantaneous sensitivity of the pressure field at 250�t is shown in Figure 2. As in the previous
case, one can observe that the occurence of a sensitivity wave of acoustic nature. It is interesting
to note that while the acoustic waves are essentially an isentropic phenomena (at a first order of
approximation), the amplitude of the emitted acoustic wave may be governed by a change in the
initial entropy field. This fact may be understood in looking at the governing equations for the
sensitivity variables: it is seen that p� has a direct dependency upon s and s�.

6.2. Sensitivity of a vortex in a supersonic flow

We now illustrate the proposed method to study the sensitivity of a vortex advected by a supersonic
uniform flow.

At t = 0, we introduce at the centre of the computational domain, a two-dimensional vortex
with the following initial conditions:

u(x, y)= u0 + a0y exp[− ln 2(x2 + y2)] (56)

v(x, y) =−a0x exp[− ln 2(x2 + y2)] (57)

where u and v are the velocity component in the x and y direction, respectively. The base flow
is uniform with the Mach number u0/c0 equal to 3. The amplitude parameter is chosen so that
a0/c0 = 1

34 , where c0 is the speed of sound associated to the base flow. The computational domain
is [0, 20]2 and a uniform mesh �x =�y = 0.1 is used.
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Figure 1. Instantaneous sensitivity of the pressure field due to an initial density perturbation at t = 250�t
for different values of the control parameter. Top: 
 = 10−4; middle: 
= 10−5; bottom: 
 = 10−6.

Let us first consider a perturbation of the pressure field in the vortex region, that is to say

p(x, y, t = 0) = p0 + i
 exp[− ln 2(x2 + y2)] (58)

where 
= 10−6 and p0 is the uniform reference pressure. The sensitivity of the pressure field
at 250�t is presented in Figure 3. We observe the advection of the sensitivity of the pressure
field, which corresponds here to the advection of the vortex. It is observed here that the pressure
sensitivity is advected at the base flow speed, and therefore does not correspond to an acoustic
wave but to an hydrodynamic mode.
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Figure 2. Instantaneous sensitivity of the pressure field due to an initial entropy perturbation at 250�t .
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Figure 3. Vortex advected by a uniform supersonic flow. Instantaneous sensitivity of the pressure field
due to an initial pressure perturbation at time 250�t .
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Figure 4. Vortex advected by a uniform supersonic flow. Instantaneous sensitivity of the streamwise
velocity component at time 250�t due to an initial circulation perturbation.
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Figure 5. Vortex in a subsonic uniform flow. Instantaneous sensitivity of the vorticity field due to an
initial pressure perturbation at 250�t (top) and 500�t (bottom).

Now let us consider an initial perturbation of the vortex initial circulation, defined as

u(x, y)= a0y exp[− ln 2(x2 + y2)](1 + i
) (59)

v(x, y) =−a0x exp[− ln 2(x2 + y2)](1 + i
) (60)

The sensitivity of the streamwise velocity component u at time 250�t is presented in Figure 4.
It is associated to an hydrodynamic mode, namely a vorticity sensitivity mode.

6.3. Sensitivity of a vortex in a subsonic flow

We now consider the case of a vortex advected by a subsonic base flow. The initial perturbations
and the computational parameters are identical to those in the case of a supersonic flow. The only
modification is the Mach number u0/c0 which is equal to 0.5 in this case.

Let us first consider a Gaussian perturbation of the initial pressure field in the vortex region,
that is to say

p(x, y, t = 0) = i
 exp[− ln 2(x2 + y2)] (61)

where 
= 10−6.
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Figure 6. Vortex in a subsonic uniform flow. Instantaneous sensitivity of the vorticity field due to an
initial circulation perturbation at times 250�t (top) and 500�t (bottom).

The sensitivity of the vorticity field �= curl(u), defined as (where, as above, � is a dummy
control parameter)

�� ≡ ��

��
= curl(u�) (62)

at times 250�t and 500�t is presented in Figure 5. One can see that, in the subsonic regime, the
vorticity sensitivity is composed of a circular wave with azimuthal modulation that propagates with
the speed of sound with respect to the base flow and an hydrodynamic mode that is advected at
speed u0. The sensitivity is weak, since the amplitude of �� is O(10−7). This is in agreement with
the fact that vorticity, entropy and acoustic modes are decoupled at the first order of approximation
in a uniform flow.

Now let us consider a perturbation of the circulation of the vortex at the initial time, defined as

u(x, y)= a0y exp[− ln 2(x2 + y2)](1 + i
) (63)

v(x, y) =−a0x exp[− ln 2(x2 + y2)](1 + i
) (64)
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Figure 7. Mixing layer with random inlet velocity perturbation. Iso-contours of the vorticity field due to
a random upstream velocity perturbation with � = 100 at time 1000�t (top) and 1500�t (bottom).

The sensitivities of the vorticity field at times 250�t and 500�t are presented in Figure 6. It
is observed that, in this case, the sensitivity has no acoustic component, and corresponds to a
vorticity mode advected at speed u0.

6.4. Sensitivity analysis of a subsonic mixing layer

As a final application, we consider a two-dimensional spatially developing mixing layer. The
computational domain is [0, 40]× [0, 20] with a uniform mesh �x = �y = 0.1. The base inlet
velocity has a hyperbolic tangent profile

u0(y)=U + U

2
(tanh(5(y − 10)) + 1) (65)

where U = c0/4. Uniform base pressure and density fields are considered. The mixing layer is
known to be inviscidly unstable. A perturbation leads to the generation of vortices by Kelvin–
Helmholtz instability [2]. A random perturbation on the streamwise velocity component at the
inlet plane is imposed to trigger unsteadiness. It is defined as

u(0, y, t) =�R(t)c exp(−2(y − 10)2) (66)

where R(t) is a random variable which takes its value between [−1, 1] and �= 0.01.
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Figure 8. Mixing layer with random inlet velocity perturbation. Instantaneous sensitivity of the vorticity
(top), pressure (middle) and entropy (bottom) fields due to a random upstream velocity perturbation with

�= 100 at time 1000�t (left) and 1500�t (right).

Let us first consider the sensitivity of the flow with respect to a coherent inlet velocity pertur-
bation. To this end, we introduce the following imaginary part to u:

û(0, y, t) = i�
c sin(�t) exp(−2(y − 10)2) (67)

leading to the following complex inlet streamwise velocity perturbation:

u(0, y, t) = �c exp(−2(y − 10)2)(R(t) + i
 sin(�t)) (68)

where the frequency is taken equal to � = 100 and 
= 10−6. The sensitivity field will be
related to the receptivity of the randomly forced mixing layer to a coherent velocity forcing
with frequency �.

We present in Figure 7 two views of the instantaneous vorticity field, which show the formation
of vortices. Due to the randomness of the inlet aerodynamic perturbation, the vortices do not form
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Figure 9. Mixing layer with random inlet velocity perturbation. Instantaneous sensitivity of the vorticity
(top), pressure (middle) and entropy (bottom) fields due to an upstream pressure perturbation with � = 500

at time 1000�t (left) and 2000�t (right).

a regular pattern. In Figure 8, the corresponding sensitivities of the solution are displayed. It is
observed that the sensitivity patterns are associated with coherent vortices, meaning that these
structures would be affected by the coherent velocity perturbation. The same observation holds for
both the pressure and the entropy sensitivity: they are associated with hydrodynamic modes, not
to acoustic-type waves. It is worth noting that the sensitivity analysis enables the determination of
the response of full solution to the selected upstream disturbance, and to identify the couplings that
exist between vorticity, pressure and entropy waves in flows which is out of the original Kovasznay
framework.

We now investigate the sensitivity of the same base flow (Equation (65)) with the same real
random velocity perturbation (Equation (66)) with respect to a coherent pressure forcing. To this
end, the following imaginary pressure perturbation is imposed at the inlet plane:

p(0, y, t) = p̂(0, y, t) = i
�pref sin(�t) exp(−2(y − 10)2) (69)
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Figure 10. Mixing layer with random inlet velocity perturbation. Instantaneous sensitivity of the vorticity
(top), pressure (middle) and entropy (bottom) fields due to an upstream pressure perturbation with � = 100

at time 1000�t (left) and 2000�t (right).

where pref is a reference pressure level associated with the base flow, �= 0.01 the amplitude
parameter and 
 is taken equal to 10−6 as in previous cases. The instantaneous sensitivity fields
are displayed in Figures 10 and 9, for �= 100 and � = 500, respectively.

We now emphasize the difference that exists between the sensitivity of an instantaneous flow
and the one of the associated base flow. To this end, we consider the same base flow given by
Equation (65), but we impose a real pressure disturbance at the inlet in place of the velocity
disturbance considered in the previous case. To obtain a meaningful comparison, the inlet pressure
perturbation is taken similar to the imaginary one used above:

p(0, y, t) = �pref sin(�t) exp(−2(y − 10)2)(1 + i
) (70)

We will consider the effects of varying �. The sensitivity of the solution is presented in Figure
11 for �= 500 and in Figure 12 for �= 100. The response of the mixing layer is observed to

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1863–1886
DOI: 10.1002/fld



1884 S. LU AND P. SAGAUT

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

     200
      50

    -100
    -250
    -400

     200
      50

    -100
    -250
    -400

   5e+03
   2e+03
  -1e+03
  -4e+03
  -7e+03
  -1e+04

   5e+03
   2e+03
  -1e+03
  -4e+03
  -7e+03
  -1e+04

       0
 -0.0005
  -0.001

       0
  -0.001
  -0.002

Figure 11. Mixing layer with coherent inlet pressure perturbation. Instantaneous sensitivity of the vorticity
(top), pressure (middle) and entropy (bottom) fields due to an upstream pressure perturbation with � = 500

at time 1000�t (left) and 2000�t (right).

be very dependent upon the forcing frequency, in agreement with known results dealing with the
dynamics of free shear layer. The sensitivity patterns are mainly associated with hydrodynamic
events, which are much more energetic than acoustic waves. But it is worth noting that for �= 500,
both the pressure and entropy sensitivities exhibit patterns associated to acoustic sensitivity waves
outside the mixing layer region. This is in agreement with the fact that the mixing layer emits
acoustic waves and that acoustic waves generate (weak) entropy disturbances in the viscous regime.

The patterns of the flow exhibit striking differences with the one obtained considering the
sensitivity of the same base flow with a real random velocity perturbation. The very reason why
the sensitivity is nothing but a measure of the gradient of the instantaneous solution to with respect
to the control parameter (the amplitude of the pressure forcing term in the present case). The
sensitivity field is therefore related to the linear response of a non-linear flow with respect to the
considered parameter.
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Figure 12. Mixing layer with coherent inlet pressure perturbation. Instantaneous sensitivity of the vorticity
(top), pressure (middle) and entropy (bottom) fields due to an upstream pressure perturbation with � = 100

at time 1000�t (left) and 2000�t (right).

7. CONCLUSION

A method which makes possible to compute both the flow and its sensitivities with respect to a
parameter in a single run thanks to a simple modification of the original Navier–Stokes solver has
been presented and assessed on several examples of practical relevance. The method was observed
to be robust with respect to the control parameter 
 and to yield useful O(
2) approximation of
the exact sensitivities.

The method is well suited to compute instantaneous sensitivities of unsteady flows, and does
not rely on any assumptions on the base flow, the geometry and the Navier–Stokes solver. It is
therefore a fully general method, that can be employed on flows with complex geometries.

It was observed that the instantaneous sensitivity fields can be interpreted, thanks to Kovasznay
decomposition as the combination of waves of several types (namely: acoustic, vorticity and entropy
waves).
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The present approach can be used to compute flow gradient with respect to control or shape
optimization parameter, but also to extend the notion of acoustic/hydrodynamic sources. The latter
point is presently under investigation by the authors.
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